Geo-level Bayesian Hierarchical Media Mix Modeling

نویسندگان

  • Yunting Sun
  • Yueqing Wang
  • Yuxue Jin
  • David Chan
  • Jim Koehler
چکیده

Media mix modeling is a statistical analysis on historical data to measure the return on investment (ROI) on advertising and other marketing activities. Current practice usually utilizes data aggregated at a national level, which often suffers from small sample size and insufficient variation in the media spend. When sub-national data is available, we propose a geo-level Bayesian hierarchical media mix model (GBHMMM), and demonstrate that the method generally provides estimates with tighter credible intervals compared to a model with national level data alone. This reduction in error is due to having more observations and useful variability in media spend, which can protect advertisers from unsound reallocation decisions. Under some weak conditions, the geo-level model can reduce ad targeting bias. When geo-level data is not available for all the media channels, the geo-level model estimates generally deteriorate as more media variables are imputed using the national level data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hierarchical Bayesian Approach to Improve Media Mix Models Using Category Data

One of the major problems in developing media mix models is that the data that is generally available to the modeler lacks sufficient quantity and information content to reliably estimate the parameters in a model of even moderate complexity. Pooling data from different brands within the same product category provides more observations and greater variability in media spend patterns. We either ...

متن کامل

Bayesian Methods for Media Mix Modeling with Carryover and Shape Effects

Media mix models are used by advertisers to measure the effectiveness of their advertising and provide insight in making future budget allocation decisions. Advertising usually has lag effects and diminishing returns, which are hard to capture using linear regression. In this paper, we propose a media mix model with flexible functional forms to model the carryover and shape effects of advertisi...

متن کامل

Structural Equation Modeling-Based Bayesian Method for Hierarchical Model Validation

Model validation involves quantitatively comparing model predictions with experimental observations, both of which contain uncertainty. A building block approach to model validation may proceed through various levels, such as material to component to subsystem to system. This paper presents a structural equation modeling-based Bayesian approach to make use of the low-level data for system-level...

متن کامل

Hierarchical Bayesian Modeling of Manipulation Sequences from Bimodal Input

We propose a hierarchical approach for Bayesian modeling and segmentation of continuous sequences of bimanual object manipulations. Based on bimodal (audio and tactile) low-level time series, the presented approach identifies semantically differing subsequences. It consists of two hierarchically executed stages, each of which employs a Bayesian method for unsupervised change point detection (Fe...

متن کامل

Bayesian Modeling for Large Spatial Datasets.

We focus upon flexible Bayesian hierarchical models for scientific data available at geo-coded locations. Investigators are increasingly turning to spatial process models to analyze such datasets. These models are customarily estimated using Markov Chain Monte Carlo (MCMC) methods, which have become especially popular for spatial modeling, given their flexibility and power to fit models that wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017